$\qquad$
$\qquad$

## NO CALCULATOR

## For questions $1-3$, find the following:

a) All asymptotes (horizontal, vertical, and slant), if they exist.
b) All intercepts ( $x$ and $y$ ), if they exist.
c) Holes, if they exist.
d) The graph of each function ... plot at least 3 points per region.

1. $y=\frac{2 x+3}{x-1}$


2. $y=\frac{2 x^{2}+4 x-6}{x+1}$

3. Solve the following equation:

$$
x^{2}-6 x+13=0
$$

Algebraically solve each inequality.
5. $(x-4)(x+3)^{2}<0$
6. $\frac{3 x+2}{(x+1)(2 x)} \leq 0$
7. $\frac{1}{x+2}-\frac{2}{x-1}>0$
8. [Chapter P Review] Simplify: $\frac{m^{3}(3 a)^{-4}}{m^{-7} a^{-3}}$
9. [Chapter P Review] Solve the following equation: $4|2 x-3|-9>15$
10. [Chapter 1 Review] Graph the following equation. Identify at least 3 points on the graph. $y=-\sqrt{3 x-9}$ Describe the transformation.
11. Given: $g(x)=x^{4}-2 x^{3}+13 x^{2}-32 x-48$.
(a) Use graphing, synthetic division and the quadratic formula to find all zeros.
(b) Write the factorization of $g(x)$ as a product of linear factors and irreducible quadratic factors.
12. Write an equation for the quadratic function with a vertex of $(-3,4)$ and containing point $(-5,-8)$
13. Find a polynomial of degree 3 with roots -4 , and $5-i$. Express the answer in standard form.
14. Perform the indicated operation.
(a) $(3-4 i)-(-8+2 i)$
(b) $\frac{3+i}{2-3 i}$ (express the answer in $a+b i$ form)
15. [Review Chapter 2a] Find the cubic regression equation (without rounding ANYTHING) for the following data. Let $x=0$ be the year 1970. Use your equation to predict the number of employees in the year 2004.

| Year | 1972 | 1975 | 1978 | 1980 | 1983 | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Employees | 247 | 475 | 658 | 546 | 493 | 605 |

