Pre Calculus Chapter 3 Review Name: _____ Block: _____

No Calculator. Show all applicable work for full credit.

Describe how to transform the graph of $g(x) = 2^x$ or $h(x) = \log x$ into the graphs of f(x) below. Sketch the graph by hand including 2 points and the asymptote.

1. $f(x) = 3^{-x}$ 2. $f(x) = 2^{x-2} + 3$

3. $f(x) = -\log_4 x$ 4. $f(x) = \log(1-x) - 3$

5. Identify each of the following for each function below: domain and range, intercept(s), the asymptote, and end behavior using limit notation.

a)
$$f(x) = 5\left(\frac{1}{2}\right)^x$$
 b) $g(x) = \log_3 x$

State whether the function is an exponential growth function or an exponential decay function.

6.
$$y = e^{4-x} + 2$$

7. $y = 5\left(\frac{3}{2}\right)^{n}$
8. $y = 3^{-2x}$

9. Find the equation of the exponential function shown at right.

10. Find the logistic function of the form $f(x) = \frac{c}{1+ab^x}$ whose initial value is 12, limit to growth is 60, and passes through (1, 24).

11. Find the (a) y-intercept and (b) the horizontal asymptotes of the function.

$$f(x) = \frac{100}{1+3(2)^x}$$

Evaluate: Remember NO calculator.

12. $\log_{\frac{1}{81}} 3$ 13. $\log_4 1$ 14. $\ln e^4$ 15. $\log \sqrt[5]{10}$ 16. $5^{\log_5 12}$ 17. $\log_{16} 64$

Graphing Calculator Allowed

For questions 18-20, choose the appropriate equation below and then solve. You should KNOW these for your test!!

$$y = ab^x$$
 $A = P\left(1 + \frac{r}{n}\right)^{(n \cdot t)}$ $A = Pe^{(r \cdot t)}$

18. Sarah's salary as an account executive is growing at a rate of 5% per year. If her initial salary is \$36,000, how long will it take her salary to double? Solve algebraically and graphically.

19. Joe invests \$1200 into an account earning 3.5% interest compounded quarterly. How much is his investment worth after 5 years?

20. The number of bacteria in an experiment are growing daily at 1.5% compounded continuously. If there were 50 bacteria present when the experiment began, how many are present on the 20^{th} day?

21. *Use the TVM Solver:* Find the payment made on the last day of each month for a 5 year \$15000 car loan at 5.2% interest.

22. Using 20th century US census data, the populations of New York state can be modeled by

$$P(t) = \frac{19.71}{1 + 61.22e^{-0.03563t}}$$

where P is the population in millions and t is the number of years since 1800. Based on this model,

- (a) What was the population of New York in 1800?
- (b) What will be the population of New York in 2020?
- 23. Given below is the official census population (in millions) of the state of Georgia for the years 1900-1950.

Year	Population
1900	2.2
1910	2.6
1920	2.9
1930	2.9
1940	3.1
1950	3.4

(a) *Using your calculator*, find an exponential regression model for Georgia's population, and

(b) Use the regression equation (without rounding) to predict when the population will be 5 million.

- 24. The amount C in grams of carbon-14 present in a certain substance after t years is given by $C = 20e^{-0.000121t}$
 - (a) What was the initial amount of carbon-14 present?
 - (b) How much is left after 10,000 years?
 - (c) What is the half-life of carbon-14? Solve algebraically and graphically.

Expand the expression. Simplify where appropriate.

25.
$$\log_3\left(\frac{x^3}{81y^2}\right)$$
 26. $\log\left(10^{-5}z^8\cdot\sqrt[3]{x^5}\right)$

Use the properties of logarithms to write the expression as a single logarithm.

27. $4\log 2 + \log \frac{1}{2} - 3\log c$ 28. $3\ln a - 2\ln b - \ln a$

29. The relationship between intensity *I* of light (in lumens) at a depth of *x* feet in Lake Erie is given by $\log\left(\frac{I}{12}\right) = -0.00235x$. What is the intensity at a depth of 25 feet? Solve algebraically and graphically.

Solve. Show all work!!

30. $\log_3(45) = x$ 31. $5e^{3x} - 9 = 28$

32. $3+5(0.6)^{x} = 23$ 33. $2\ln\left(\frac{x}{3}\right) - 1 = 5$

34. $\log_3(1-3x) + 1 = 5$ 35. $\log_3(x+2) - \log_3(x-1) = 2$